	Compound	M. p., °C. °,d	Formula	Chlor Calcd.	ine, % Found	Nitrog Calcd.	ren, % Found	Mol Calcd.	l. wt. Found
1	Methyl di-(p-chlorophenyl)-acetate	37-39	$C_{15}H_{12}Cl_2O$	24.6	24.2			295	295 ^f
2	Phenacyl di-(p-chlorophenyl)-acetate	132 - 133	$C_{22}H_{16}Cl_2O_3$	17.8	17.9			399	378
3	Di-(p-chlorophenyl)-acetic anhydride	104 - 105.5	$C_{28}H_{18}Cl_4O_3$	26.1	26.3			544	548°
4	2-(p,p'-Dichlorobenzhydryl)-benzimidazole	246 - 248	$C_{20}H_{13}Cl_2N_2$	20.1	19.4	7.95	7.81		
5	Di-(p-chlorophenyl)-acetyl chloride	Oil	$C_{14}H_9Cl_3O$	35.4	34.9				
6	Di-(p-chlorophenyl)-acetamide	152 - 154	$C_{14}H_{11}Cl_2NO$	25.3	25.0	5.00	4.60		
7	Di-(p-chlorophenyl)-acetanilide ^a	205 - 206	$C_{20}H_{15}Cl_2NO$	19.9	19.9	3.93	4.03		
8	Di-(p-chlorophenyl)-aceto-4-chloroanilide	258 - 260	$C_{20}H_{14}Cl_3NO$	27.2	27.3	3.59	3.65		
9	p,p'-Dichlorobenzhydryl phenyl ketone	90-91	$C_{20}H_{14}Cl_2O$	20.9	20.9			341	353 ^k
0	Di-(p-chlorophenyl)-acetonitrile ^b	85-86	$C_{14}H_9Cl_2N$	27.1	25.8	5.34	5.62		

TABLE I DI-(\$\nu\$-chlorophenyl)-acetic Acid Derivatives

^a Described by Gatzi and Stammbach, *Helv. Chim. Acta*, **29**, 563 (1946), as melting 202-204° in a paper published after our synthesis had been done. ^b Despite the sharp m. p., analysis shows that this compound is not pure. ^c These m. p.'s are uncorrected. ^d The m. p.'s of the corresponding diphenylacetic acid (m. p. 148-149°) derivatives were taken from the literature for comparison; they are 1, 60°; 3, 98°; 5, 56-57°; 6, 167-168°; 7, 180-181°; 9, 136-137°. In these examples the diphenylacetic acid derivatives frequently are higher melting. ^c Saponification values of this ester ran 75-100% over the calculated, probably as the result of a secondary reaction of phenacyl alcohol with alkali. Boiling point rise molecular weights in benzene gave high values, indicative of association. This value was found by the Rast camphor method. ^f By saponification equivalent. ^e By neutral equivalent. ^h By b. p. rise in benzene.

partially crystallized to give 1.5 g. of solid melting $83-85^{\circ}$. Crystallization from 10 ml. of 95% ethanol gave 1.0 g. (18%) melting $85-86^{\circ}$. Despite the sharp melting point, analysis indicated an impure compound. SHERWIN-WILLIAMS LABORATORY WESTERN RESERVE UNIVERSITY CLEVELAND 6, OHIO

Oliver Grummitt Dean Marsh

RECEIVED AUGUST 15, 1949

COMMUNICATIONS TO THE EDITOR

GEOMETRIC ISOMERS OF 1-PHENYL-1,3-BUTA-DIENE

Sav	٠
50	•

1-Phenyl-1,3-butadiene made by the hydrolysis of the cinnamaldehyde-methylmagnesium bromide addition compound in 30% sulfuric acid¹ has been shown to be the pure *trans* isomer by its quantitative Diels-Alder reaction with maleic anhydride.² Varying the conditions of hydrolysis does not, as previously reported,⁸ give the *cis* and *trans* forms but only the *trans* is obtained.

cis-1-Phenyl-1,3-butadiene has been made by ultraviolet irradiation of the *trans* isomer. The *cis* compound does not react with maleic anhydride at room temperature. Irradiation of the *cis* compound isomerizes it partially to the *trans*. The two isomers differ markedly in physical properties:

(2) Robey, Morrell and Wiese, *ibid.*, **63**, 627 (1941) and Craig, *ibid.*, **65**, 1006 (1943) differentiated *cis* and *trans* piperylenes by the greater reactivity of the *trans* isomer to maleic anhydride.

	D ter °C,	ist. np., Mm.	F. p., °C		d ²⁵ 4	n ²⁵ D	Melar ref.ª
cis	71	11	-56.99 = 1	0.04	0.9197	1.5822	47.25
trans	83	11	4.52 =	.04	.9232	1.6089	48.82
αT	`he n	nolar	refraction of	calcul	ated fro	om the L	orentz-
Lorenz equation is 43.85.							

The boiling point, density and refractive index are usually greater for the *cis* form of olefinic hydrocarbons. This is also true of piperylene.² The exceptional behavior of the phenylbutadienes is noteworthy.

In ultraviolet absorption spectra the *cis* form shows a maximum at 265–269 m μ , molar extinction 184 \times 10², and the *trans* at 280 m μ , molar extinction 298 \times 10². An outstanding difference in infrared absorption spectra is the 14.20- μ band for the *cis* and the 10.56- μ band for the *trans* which are unique for each isomer.

Neither geometric isomer adds sulfur dioxide to give a cyclic sulfone.

0	
MORLEY CHEMICAL LABORATORY	
WESTERN RESERVE UNIVERSITY	OLIVER GRUMMITT
Cleveland 6, Ohio	FRANK J. CHRISTOPH

Received October 13, 1949

⁽¹⁾ Grummitt and Becker, THIS JOURNAL, 70, 149 (1948).

⁽³⁾ Muskat and Herrman, ibid., 53, 252 (1931).